Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2284535

ABSTRACT

Enzyme butyrylcholinesterase (BChE) shows increased activity in some brain regions after progression of Alzheimer's disease and is therefore one of the therapeutic targets for symptomatic treatment of this neurodegenerative disorder. The organoruthenium(II) complex [(η6-p-cymene)Ru(II)(1-hydroxy-3-methoxypyridine-2(1H)-thionato)pta]PF6 (C1) was designed based on the results of our previous structure-activity studies. Inhibitory activity toward cholinesterase enzymes shows that this complex selectively, competitively, and reversibly inhibits horse serum BChE (hsBChE) with an IC50 value of 2.88 µM. When tested at supra-pharmacological concentrations (30, 60, 90, and 120 µM), C1 had no significant effect on the maximal amplitude of nerve-evoked and directly elicited single-twitch and tetanic contractions. At the highest tested concentration (120 µM), C1 had no effect on resting membrane potential, but significantly decreased the amplitude of miniature end-plate potentials (MEPP) without reducing their frequency. The same concentration of C1 had no effect on the amplitude of end-plate potentials (EPP), however it shortened the half-decay time of MEPPs and EPPs. The decrease in the amplitude of MEPPs and shortening of the half-decay time of MEPPs and EPPs suggest a possible weak inhibitory effect on muscle-type nicotinic acetylcholine receptors (nAChR). These combined results show that, when applied at supra-pharmacological concentrations up to 120 µM, C1 does not importantly affect the physiology of neuromuscular transmission and skeletal muscle contraction.


Subject(s)
Butyrylcholinesterase , Neuromuscular Junction , Animals , Horses , Neuromuscular Junction/physiology , Synaptic Transmission/physiology , Membrane Potentials , Muscle Contraction
2.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2023734

ABSTRACT

Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.


Subject(s)
Cerium , Gallium , Cathepsin K/metabolism , Cathepsins/metabolism , Cysteine , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Endopeptidases/metabolism , Humans , Ions , Kinetics , Lead
3.
J Enzyme Inhib Med Chem ; 37(1): 2158-2168, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1978145

ABSTRACT

Zinc pyrithione (1a), together with its analogues 1b-h and ruthenium pyrithione complex 2a, were synthesised and evaluated for the stability in biologically relevant media and anti-SARS-CoV-2 activity. Zinc pyrithione revealed potent in vitro inhibition of cathepsin L (IC50=1.88 ± 0.49 µM) and PLPro (IC50=0.50 ± 0.07 µM), enzymes involved in SARS-CoV-2 entry and replication, respectively, as well as antiviral entry and replication properties in an ex vivo system derived from primary human lung tissue. Zinc complexes 1b-h expressed comparable in vitro inhibition. On the contrary, ruthenium complex 2a and the ligand pyrithione a itself expressed poor inhibition in mentioned assays, indicating the importance of the selection of metal core and structure of metal complex for antiviral activity. Safe, effective, and preferably oral at-home therapeutics for COVID-19 are needed and as such zinc pyrithione, which is also commercially available, could be considered as a potential therapeutic agent against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Ruthenium , Antiviral Agents/pharmacology , Cathepsin L , Humans , Organometallic Compounds , Pyridines , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL